Локальная сеть: основы функционирования компьютерных сетей
Содержание:
Надежность
Конструкция набора интернет-протоколов придерживается принципа сквозного соединения , концепции, адаптированной из проекта CYCLADES . В соответствии с принципом непрерывности, сетевая инфраструктура считается ненадежной по своей природе на любом отдельном сетевом элементе или среде передачи и является динамичной с точки зрения доступности каналов и узлов. Не существует централизованного мониторинга или средства измерения производительности, отслеживающего или поддерживающего состояние сети. В целях снижения сложности сети интеллектуальные ресурсы сети намеренно размещаются в конечных узлах .
Вследствие такой конструкции Интернет-протокол обеспечивает доставку только с максимальной эффективностью, а его услуги характеризуются как ненадежные . На языке сетевой архитектуры это протокол без установления соединения , в отличие от связи с установлением соединения . Могут возникнуть различные неисправности, такие как повреждение данных , потеря пакетов и дублирование. Поскольку маршрутизация является динамической, что означает, что каждый пакет обрабатывается независимо, и поскольку сеть не поддерживает состояние, основанное на пути предыдущих пакетов, разные пакеты могут направляться в один и тот же пункт назначения по разным путям, что приводит к неупорядоченной доставке к получателю. приемник.
Все неисправности в сети должны обнаруживаться и компенсироваться участвующими конечными узлами. Протоколы верхнего уровня набора Интернет-протоколов отвечают за решение проблем с надежностью. Например, хост может буферизовать сетевые данные, чтобы гарантировать правильный порядок, прежде чем данные будут доставлены в приложение.
IPv4 обеспечивает защиту, гарантирующую, что заголовок IP-пакета не содержит ошибок. Узел маршрутизации отбрасывает пакеты, не прошедшие проверку контрольной суммы заголовка . Хотя протокол управляющих сообщений Интернета (ICMP) обеспечивает уведомление об ошибках, узел маршрутизации не требуется уведомлять любой конечный узел об ошибках. IPv6, напротив, работает без контрольных сумм заголовков, поскольку предполагается , что текущая технология канального уровня обеспечивает достаточное обнаружение ошибок.
Какой протокол является базовым для сети Интернет
TCP/IP — самый распространённый протокол, по которому в настоящее время передаётся информация. Хранение базовой передаваемой информации обеспечивается за счёт добавления к этой схеме трёх параметров:
- повторная отправка запросов, если возникла ошибка;
- идентификатор, по которому действия подтверждают механически;
- порядковый номер для определения приоритета, очереди пересылки сведений. Называться он может по-разному.
Совокупность подобных характеристик будет работать, если в основе только IP-протокол. Он проходит несколько фаз по мере своей работы:
- фаза установки соединения;
- режим передачи;
- установление разрыва, когда процесс завершён.
Протокол RIST
Через год после появления Альянса SRT компании, имеющие корпоративные решения в области IP-доставки, создали еще один альянс для разработки более продвинутой технологии. Новый протокол получил название Reliable Internet Stream Transport (RIST), как и сам альянс. Он организован в рамках консорциума Video Services Forum, занимающегося разработкой и стандартизацией сетевых технологий для передачи медиа. К слову, в этот альянс в качестве ключевого участника
и Haivision.
RIST задуман как многопрофильный стандарт, однако пока выпущен только базовый профиль. По функциональности он уступает SRT. В частности, не поддерживает мультиплексирование каналов на одном UDP-порту и имеет только один режим установления соединения (Push). В результате для передачи каждого потока приходится открывать по UDP-порту на приемнике и на передатчике. Кроме того, в отличие от SRT, базовый профиль RIST не поддерживает шифрование и файловую передачу. В то же время в протокол заложена передача множественных каналов. Она реализована в двух режимах. Один поддерживает разбиение логического канала на несколько физических, отправляемых разными маршрутами. Второй обеспечивает резервирование потоков и бесшовное переключение с одного на другой.
А схожи SRT и базовая версия RIST в том, что оба используют ARQ с настраиваемым соотношением между задержкой и защищенностью. Кроме того, они практически одинаковы в плане мониторинга потоков и сбора статистики. Однако у RIST есть все шансы опередить конкурента. Уже подготовлен основной профиль протокола, и живую демонстрацию его работы можно было увидеть на IBC-2019. При разработке профиля учитывались разные сценарии его применения, в том числе дистанционные интервью, сбор новостей из удаленных точек, передача видео в облако и передача мультикастовых трансляций.
Перечислим основные усовершенствования, появившиеся в этом профиле. Во-первых, добавилась поддержка мультиплексирования потоков на одном UDP-порту. Во-вторых, реализовано GRE-туннелированние (Generic Routing Encapsulation). GRE-шлюзы могут использоваться для организации двухстороннего обмена между RIST-устройствами базовой версии, умеющими взаимодействовать только в режиме Push. Шлюзы также могут применяться для передачи управляющих данных, например SNMP, для туннелирования мультикастового трафика и решения других задач. В-третьих, добавлены механизмы скремблирования, авторизации и аутентификации. Для скремблирования и авторизации выбран протокол DTLS, другими словами, версия TLS для UDP-протокола. Она адаптирована для приложений, чувствительных к временным задержкам. В рамках TLS могут использоваться разные алгоритмы шифрования, но в качестве основных для RIST предложены AES 128/256 бит.
Из других улучшений отметим оптимизацию транспортной полосы за счет исключения нулевых пакетов. Они не несут информации, но нужны для сохранения синхронизации. Поэтому перед передачей они заменяются метками и восстанавливаются на приемной стороне. Кроме того, добавлена возможность расширить заголовок RTP для увеличения цикла нумерации пакетов. Эта нумерация используется в ARQ при запросе потерянных пакетов, а при высокой скорости передачи стандартного цикла может не хватить.
Перспективы сосуществования SRT и RIST пока непонятны. С учетом того, что Haivision оказался одним из основных участников RIST, не исключен вариант слияния протоколов. Но может быть, каждый из них найдет свою нишу. Ясно одно — транспортные технологии для передачи видео через IP-сети с негарантированным качеством будут и дальше активно развиваться, а их доля во всех сегментах передачи медиа будет расти.
Краткое описание протоколов Интернет
TCP/IP
Над созданием протоколов, необходимых для существования глобальной сети, трудились лучшие умы человечества. Одним из них был Винтон Серф (Vinton G. Cerf). Сейчас этого человека называют «отцом Интернета». В 1997 году Президент США Билл Клинтон наградил Винтона Серфа и его коллегу Роберта Кана (Robert E. Kahn) Национальной медалью за заслуги в области технологии, отметив их вклад в становление и развитие Интернета. Ныне Винтон Серф занимает пост старшего вице-президента по Интернет-архитектуре в корпорации MCI WorldCom Inc.
В 1972 году группа разработчиков под руководством Винтона Серфа разработала протокол TCP/IP — Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Интернета).
Эксперимент по разработке этого протокола проводился по заказу Министерства обороны США. Данный проект получил название ARPANet (Advanced Research Projects Agency Network — Сеть агентства важных исследовательских проектов). Очевидно, что в обстановке войны, когда необходимость в обмене информацией встает как никогда остро, возникает проблема непредсказуемости состояния пути, по которому будет передана та или иная информация — любой из узлов передачи в любой момент может быть выведен из строя противником. Поэтому главной задачей при разработке сетевого протокола являлась его «неприхотливость» — он должен был работать с любым сетевым окружением и, кроме того, обладать гибкостью в выборе маршрута при доставке информации.
Позже TCP/IP перерос свое изначальное предназначение и стал основой стремительно развивавшейся глобальной сети, ныне известной как Интернет, а также небольших сетей, использующих технологии Интернета — интранет. Стандарты TCP/IP являются открытыми и непрерывно совершенствуются.
На самом деле TCP/IP является не одним протоколом, а целым набором протоколов, работающих совместно. Он состоит из двух уровней. Протокол верхнего уровня, TCP, отвечает за правильность преобразования сообщений в пакеты информации, из которых на приемной стороне собирается исходное послание. Протокол нижнего уровня, IP, отвечает за правильность доставки сообщений по указанному адресу. Иногда пакеты одного сообщения могут доставляться разными путями.
HTTP
Протокол HTTP (Hypertext Transfer Protocol — Протокол передачи гипертекста) является протоколом более высокого уровня по отношению к протоколу TCP/IP — протоколом уровня приложения. HTTP был разработан для эффективной передачи по Интернету Web-страниц. Именно благодаря HTTP мы имеем возможность созерцать страницы Сети во всем великолепии. Протокол HTTP является основой системы World Wide Web.
Вы отдаете команды HTTP, используя интерфейс броузера, который является HTTP-клиентом. При щелчке мышью на ссылке броузер запрашивает у Web-сервера данные того ресурса, на который указывает ссылка — например, очередной Web-страницы.
Чтобы текст, составляющий содержимое Web-страниц, отображался на них определенным образом — в соответствии с замыслом создателя страницы — он размечается с помощью особых текстовых меток — тегов языка разметки гипертекста (HyperText Markup Language, HTML).
Адреса ресурсов Интернета, к которым вы обращаетесь по протоколу HTTP, выглядит примерно следующим образом: http://www.tut.by
FTP
Протокол FTP (File Transfer Protocol — Протокол передачи файлов) специально разработан для передачи файлов по Интернету. Позже мы поговорим о нем подробно. Сейчас скажем лишь о том, что адрес FTP-ресурса в Интернете выглядит следующим образом: ftp://ftp.netscape.com
TELNET
С помощью этого протокола вы можете подключиться к удаленному компьютеру как пользователь (если наделены соответствующими правами, то есть знаете имя пользователя и пароль) и производить действия над его файлами и приложениями точно так же, как если бы работали на своем компьютере.
Telnet является протоколом эмуляции терминала. Работа с ним ведется из командной строки. Если вам нужно воспользоваться услугами этого протокола, не стоит рыскать по дебрям Интернета в поисках подходящей программы. Telnet-клиент поставляется, например, в комплекте Windows 98.
Чтобы дать команду клиенту Telnet соединиться с удаленным компьютером, подключитесь к Интернету, выберите в меню Пуск (Start) команду Выполнить (Run) и наберите в строке ввода, например, следующее: telnet lib.ru
(Вместо lib.ru вы, разумеется, можете ввести другой адрес.) После этого запустится программа Telnet, и начнется сеанс связи.
Знаете ли Вы,
Уровни сетей и модель OSI
Обычно, сети обсуждаются в горизонтальной плоскости, рассматриваются протоколы сети интернет верхнего уровня и приложения. Но для установки соединений между двумя компьютерами используется множество вертикальных слоев и уровней абстракции. Это означает, что существует несколько протоколов, которые работают друг поверх друга для реализации сетевого соединения. Каждый следующий, более высокий слой абстрагирует передаваемые данные и делает их проще для восприятия следующим слоем, и в конечном итоге приложением.
Существует семь уровней или слоев работы сетей. Нижние уровни будут отличаться в зависимости от используемого вами оборудования, но данные будут передаваться одни и те же и будут иметь один и тот же вид. На другую машину данные всегда передаются на самом низком уровне. На другом компьютере, данные проходят все слои в обратном порядке. На каждом из слоев к данным добавляется своя информация, которая поможет понять что делать с этим пакетом на удаленном компьютере.
Модель OSI
Так сложилось исторически, что когда дело доходит до уровней работы сетей, используется модель OSI или Open Systems Interconnect. Она выделяет семь уровней:
- Уровень приложений – самый верхний уровень, представляет работу пользователя и приложений с сетью Пользователи просто передают данные и не задумываются о том, как они будут передаваться;
- Уровень представления – данные преобразуются в более низкоуровневый формат, чтобы быть такими, какими их ожидают получить программы;
- Уровень сессии – на этом уровне обрабатываются соединения между удаленным компьютерами, которые будут передавать данные;
- Транспортный уровень – на этом уровне организовывается надежная передача данных между компьютерами, а также проверка получения обоими устройствами;
- Сетевой уровень – используется для управления маршрутизацией данных в сети пока они не достигнут целевого узла. На этом уровне пакеты могут быть разбиты на более мелкие части, которые будут собраны получателем;
- Уровень соединения – отвечает за способ установки соединения между компьютерами и поддержания его надежности с помощью существующих физических устройств и оборудования;
- Физический уровень – отвечает за обработку данных физическими устройствами, включает в себя программное обеспечение, которое управляет соединением на физическом уровне, например, Ehternet или Wifi.
Как видите, перед тем, как данные попадут к аппаратному обеспечению им нужно пройти множество слоев.
Модель протоколов TCP/IP
Модель TCP/IP, еще известная как набор основных протоколов интернета, позволяет представить себе уровни работы сети более просто. Здесь есть только четыре уровня и они повторяют уровни OSI:
- Приложения – в этой модели уровень приложений отвечает за соединение и передачу данными между пользователям. Приложения могут быть в удаленных системах, но они работают как будто бы находятся в локальной системе;
- Транспорт – транспортный уровень отвечает за связь между процессами, здесь используются порты для определения какому приложению нужно передать данные и какой протокол использовать;
- Интернет – на этом уровне данные передаются от узла к узлу по сети интернет. Здесь известны конечные точки соединения, но не реализуется непосредственная связь. Также на этом уровне определяются IP адреса;
- Соединение – этот уровень реализует соединение на физическом уровне, что позволяет устройствам передавать между собой данные не зависимо от того, какие технологии используются.
Эта модель менее абстрактная, но мне она больше нравиться и ее проще понять, поскольку она привязана к техническим операциям, выполняемым программами. С помощью каждой из этих моделей можно предположить как на самом деле работает сеть. Фактически, есть данные, которые перед тем, как будут переданы, упаковываются с помощью нескольких протоколов, передаются через сеть через несколько узлов, а затем распаковываются в обратном порядке получателем. Конечные приложения могут и не знать что данные прошли через сеть, для них все может выглядеть как будто обмен осуществлялся на локальной машине.
Основные протоколы интернета
Как я уже сказал. в основе работы сети лежит использование нескольких протоколов, которые работают один поверх другого. Давайте рассмотрим основные сетевые протоколы интернет, которые вам будут часто встречаться, и попытаемся понять разницу между ними.
- MAC или (Media Access Control) — это протокол низкого уровня, который используется для идентификации устройств в локальной сети. У каждого устройства, подключенного к сети есть уникальный MAC адрес, заданный производителем. В локальных сетях, а все данные выходят из локальной сети и попадают в локальную сеть перед тем, как попасть к получателю, используются физические MAC адреса для обозначения устройств. Это один из немногих протоколов уровня соединения, с которым довольно часто приходится сталкиваться.
- IP ( Internet Protocol) — расположен уровнем выше, за MAC. Он отвечает за определение IP адресов, которые будут уникальными для каждого устройства и позволяют компьютерам находить друг друга в сети. Он относится к сетевому уровню модели TCP/IP. Сети могут быть связанны друг с другом в сложные структуры, с помощью этого протокола компьютеры могут определить несколько возможных путей к целевому устройству, причем во время работы эти пути могут меняться. Есть несколько реализаций протокола, но наиболее популярной на сегодняшний день является IPv4 и IPv6.
- ICMP (Internet control message protocol) — используется для обмена сообщениями между устройствами. Это могут быть сообщения об ошибках или информационные сообщения, но он не предназначен для передачи данных. Такие пакеты используются в таких диагностических инструментах, как ping и traceroute. Этот протокол находится выше протокола IP;
- TCP (Transmission control protocol) — это еще один основной сетевой протокол, который находится на том же уровне, что и ICMP. Его задача — управление передачей данных. Сети ненадежны. Из-за большого количества путей пакеты могут приходить не в том порядке или даже теряться. TCP гарантирует, что пакеты будут приняты в правильном порядке, а также позволяет исправить ошибки передачи пакетов. Информация приводится к правильному порядку, а уже затем передается приложению. Перед передачей данных создается соединение с помощью так называемого алгоритма тройного рукопожатия. Он предусматривает отправку запроса и подтверждение открытия соединения двумя компьютерами. Множество приложений используют TCP, это SSH, WWW, FTP и многие другие.
- UDP (user datagram protocol) — это популярный протокол, похожий на TCP, который тоже работает на транспортном уровне. Отличие между ними в том, что здесь используется ненадежная передача данных. Данные не проверяются при получении, это может выглядеть плохой идеей, но во многих случаях этого вполне достаточно. Поскольку нужно отправлять меньше пакетов, UDP работает быстрее, чем TCP. Поскольку соединение устанавливать не нужно, то этот протокол может использоваться для отправки пакетов сразу на несколько машин или IP телефонии.
- HTTP (hypertext transfer protocol) — это протокол уровня приложения, который лежит в основе работы всех сайтов интернета. HTTP позволяет запрашивать определенные ресурсы у удаленной системы, например, веб страницы, и файлы;
- FTP (file transfer protocol) — это протокол передачи файлов. Он работает на уровне приложений и обеспечивает передачу файла от одного компьютера к другому. FTP — не безопасный, поэтому не рекомендуется его применять для личных данных;
- DNS (domain name system) — протокол того же уровня, используемый для преобразования понятных и легко читаемых адресов в сложные ip адреса, которые трудно запомнить и наоборот. Благодаря ему мы можем получить доступ к сайту по его доменному имени;
- SSH (secure shell) — протокол уровня приложений, реализованный для обеспечения удаленного управления системой по защищенному каналу. Многие дополнительные технологии используют этот протокол для своей работы.
Есть еще очень много других протоколов, но мы рассмотрели только сетевые протоколы, которые больше всего важны. Это даст вам общие понятия того, как работает сеть и интернет в целом.
Что такое MAC-адрес, IP-адрес и Маска подсети?
Прежде чем познакомиться с основными принципами взаимодействия сетевых устройств, необходимо подробно разобрать, что такое IP-адрес, MAC-адрес и Маска подсети.
MAC-адрес — это уникальный идентификатор сетевого оборудования, который необходим для взаимодействия устройств в локальной сети на физическом уровне. MAC-адрес «вшивается» в сетевую карту заводом изготовителем и не подлежит изменению, хотя при необходимости это можно сделать на программном уровне. Пример записи MAC-адреса: 00:30:48:5a:58:65.
IP-адрес – это уникальный сетевой адрес узла (хоста, компьютера) в локальной сети, к примеру: 192.168.1.16. Первые три группы цифр IP-адреса используется для идентификации сети, а последняя группа для определения «порядкового номера» компьютера в этой сети. Если провести аналогию, то IP-адрес можно сравнить с почтовым адресом, тогда запись будет выглядеть так: регион.город.улица.дом. Изначально, использовались IP-адреса 4-ой версии (IPv4), но когда количество устройств глобальной сети возросло до максимума, то данного диапазона стало не хватать, в следствии чего был разработан протокол TCP/IP 6-ой версии — IPv6. Для локальных сетей достаточно 4-ой версии TCP/IP протокола.
Маска подсети – специальная запись, которая позволяет по IP-адресу вычислять адрес подсети и IP-адрес компьютера в данной сети. Пример записи маски подсети: 255.255.255.0. О том, как происходит вычисление IP-адресов мы рассмотрим чуть позже.
Краткая история развития компьютерных сетей
Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.
50-е годы: мейнфреймы
В 50-х года 20-го века появились первые «компьютеры» — мейнфреймы. Это были большие вычислительные машины которые могли занимать по площади современный спортивный зал. Вычислительные мощности были не большие, но факт в том что вычисления уже производила машина.
Начало 60-х годов: многотерминальные системы
В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.
70-е годы: первые компьютерные сети
?0-е годы, время холодной войны. СССР и США сидели возле своих ракет и думали кто же атакует (или не атакует) первым. Центры управления ракетами США располагались в разных местах удаленных друг от друга. Если в одном центре производится запуск ракет, после которого в центр попадает ракета врага, то вся информация в этом центре — утеряна. Управление перспективных исследовательских проектов Министерства обороны США (Defense Advanced Research Projects Agency (DARPA)) ставит перед учеными задачу — разработать технологию которая позволяла бы передавать информацию из одного стратегического центра в другой на случай его уничтожения.
В 1969 году появляется ARPANET (от англ. Advanced Research Projects Agency Network) — первая компьютерная сеть созданная на основе протокола IP который используется и по сей день. За 11 лет ARPANET развивается до сети способной обеспечить связь между стратегическими объектами вооруженных сил США.
Середина 70-х годов: большие интегральные схемы
На основе интегральных схем появляются «мини компьютеры». Они начинают выходить за пределы министерства обороны и постепенно внедряются в повседневную жизнь. За компьютерами начинают работать бухгалтера, менеджеры, компьютеры начинают управлять производством. Появляются первые локальные сети.
В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:
- Ethernet.
- Token Ring.
- Arcnet.
- FDDI (Fiber Distributed Data Interface) — волоконнооптический интерфейс передачи данных.
- TCP/IP используется в ARPANET.
- Ethernet становится лидером среди сетевых технологий.
- В 1991 году появился интернет World Wide Web.