Компьютер + интернет + блог = статьи, приносящие деньги

Содержание:

Проценты: правила

Рассмотрим четыре известных способа поиска процентов.

Занимайтесь математикой в удовольствие вместе с нашими преподавателями на курсах по математике для учеников с 1 по 11 классы!

Нахождение одного процента от числа

При делении на 100% получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать проценты от суммы, нужно умножить их на величину 1%. А чтобы перевести известное значение в проценты, следует разделить его на величину 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:

  • Переведем 15% в рубли:

    250 : 100 = 2,5 — это 1% от стоимости шоколада,

    значит, 2,5 × 15 = 37,5 — это 15%.

  • 250 — 37,5 = 212,5.
  • 212,5 < 225.

Ответ: выгоднее воспользоваться скидкой 15%.

Составление пропорции

Пропорция — определенное соотношение частей между собой. 

С помощью метода пропорции можно рассчитать любые проценты. Выглядит это так:

a : b = c : d. 

Читается: а относится к b так, как с относится к d

Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение

Рассмотрим пример. Насколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Как решаем:

Найдем, сколько рублей составляет выгода, то есть скидка в 14%. Обозначим стоимость футболки за 100%, значит 1390 рублей = 100%. Тогда 14% это х рублей. Получаем пропорцию:

1390 руб. = 100%
x руб. = 14%

Перемножим крест-накрест и найдем x:

x = 1390 × 14 : 100
x = 194,6

Ответ: выгода по скидке составила 194,6 рубля.

Соотношения чисел

Есть случаи, при которых можно использовать простые дроби. Например, 10% — это десятая часть целого. Чтобы найти 10% от числа a, нужно разделить его на 10. Собрали примеры соотношения чисел в таблице.

Процент Дробь Как найти % от числа a
10% 1/10 a : 10
20% 1/5 a : 5
25% 1/4 a : 4
50% 1/2 a : 2
75% 3/4 a : 4 × 3

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Как решаем:

  • 100% — 25% = 75%,

    значит, нужно заплатить 75% от первоначальной цены.

  • Используем правило соотношения чисел:

    75% — это 3/4 от числа, значит,
    8500 : 4 × 3 = 6375 (рублей).

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Расходы семьи

  • Коммунальные услуги – 800 рублей (800 х 100 : 14 000 = 5,7%).
  • Электроэнергия – 490 рублей (490 х 100 : 14 000 = 3,5%).
  • Оплата стационарного телефона – 250 рублей (250 х 100 : 14 000 = 1,7%).
  • Питание – 5000 рублей (5000 х 100 : 14 000 = 35,71%).
  • Одежда – 3900 рублей (3900 х 100 : 14 000 = 27,85%).
  • Медикаменты – 510 рублей (510 х 100 : 14 000 = 3,64%).
  • Моющие средства – 220 рублей (220 х 100 : 14 000 = 1,57%).
  • Покупка бензина и прочее для машины – 1000 рублей (1000 х 100 : 14 000 = 7,1%).
  • Оплата школьного питания – 500 рублей (500 х 100 : 14 000 = 3,57%).
  • Всего 12 670 рублей (12 670 х 100 : 14 000 = 90,5%).

Вывод: 90,5% расходов от числа, т. е. от зарплаты родителей. Почти 10% остается на всякий непредвиденный случай. В мире существуют формулы, которые желательно запомнить. Они пригодятся везде. Следующий подраздел статьи мы как раз и посвятим этой теме.

Как посчитать проценты, разделив число на 10

Этот способ похож на предыдущий, но считать с его помощью гораздо быстрее. Но только если речь идёт о процентах, кратных пяти.

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Пример

Допустим, вы кладёте на депозит 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

Что называют процентами?

В кредиторных отношениях всегда участвуют две стороны: банковское учреждение и физическое (юридическое) лицо. Для первой процент – это доход от услуг (в этом случае, применения капитала), для второй – плата за возможность пользования деньгами. Если же создаётся вклад, то данное соотношение становится обратным: выгоду получает человек, доверивший свои сбережения системе.

Именно за счёт таких дополнительных платежей становится реальной вся деятельность финансовых организаций. Благодаря тому, что клиенты выплачивают не только основную сумму долга, но и процентные начисления, банк может в дальнейшем использовать эти деньги в обороте (например, выдавать новые кредиты), то есть данные средства составляют капитал.

Необходимо сказать, что величина ставки достаточно сложно вычисляется. Чаще всего в неё входят затраты на страхование, различные возможные штрафы, рефинансирование, комиссии (иногда даже скрытые). Часто на сайтах организаций, предлагающих займ, есть онлайн-калькулятор, позволяющий вычислить сумму дополнительного платежа. Однако даже в таком случае расчёт оказывается лишь приблизительным, точные значения вы узнаете только при составлении договора под конкретную ситуацию.

Похожие термины:

  • процентные платежи, исчисленные до вычета взимаемых налогов.

  • обозначение котировки облигаций, означающее, что покупатель получит и стоимость облигации, и проценты по ней.

  • 1) проценты, которые банк должен выплатить вкладчикам по депозитам за определенный период времени; 2) проценты, уплачиваемых заемщиками банку за предоставление кредита; 3) часть процентов по облига

  • процентные платежи после вычета налогов.

  • форма расчета дохода на процент, основанная на арифметической прогрессии. С помощью простых процентов рассчитывается доход на вклад при сроке его хранения меньше года: d=Snj/ 360, где d — доход: S — исход

  • проценты за незаконное пользование чужими денежными средствами. Определяются установленными Банком России средними ставками банковского процента по вкладам физических лиц, за соответствующий

  • проценты, предусмотренные на сумму денежного обязательства за период пользования денежными средствами, подлежащие начислению. Размер процентов определяется действовавшей в соответствующие пер

  • кредитор по умолчанию имеет право на получение с должника процентов на сумму долга за период, пока тот пользуется денежными средствами. Если они этого не сделают, то он будет равен ставке рефинанс

  • прибыль от банковского предпринимательства за вычетом взаимных платежей из прибыли.

  • процент по облигации, образовавшийся с момента последней выплаты по ней. При покупке такой облигации Н.п. включается в ее цену и возвращается затем обладателю при очередной выплате процентов.

  • плата, осуществляемая заемщиком кредитору за пользование кредитом.

  • размер ставки, рассчитанный с учетом продолжительности года в 365 дней, а не 360 дней, как принято в банковской практике.

  • ставка рефинансирования на день уплаты заемщиком суммы долга или его соответствующей части, существующая в месте жительства заимодавца (месте нахождения юридического лица), применяемая в случае

  • долговые обязательства, по которым должник выплачивает кредитору процент за предоставленную ссуду.

  • процент приведения капиталовложений на будущий период времени к их стоимости в текущем периоде, вычисленный с учетом риска капиталовложений.

  • процент, взимаемый банком с суммы векселя при покупке его лондонским банком и вексельным маклером до наступления срока платежа.

  • плата, взимаемая банками за авансирование денег путем учета векселей, ценных бумаг, купонов, акций и облигаций, а также других долговых обязательств до наступления сроков оплаты по ним.

  • ставка процента в условиях его начисления за периоды меньше года. Годовая ставка процента рассчитывается по формуле: [(1 + n/m)m -I], где n — номинальная годовая ставка, m — число периодов начисления проце

  • см. ПРОЦЕНТНЫЙ АРБИТРАЖ С ЦЕЛЬЮ СТРАХОВАНИЯ

  • свидетельство или купон на получение дивиденда.

Примеры вычисления исходного числа по известному проценту от числа

40 · 100% = 800
5%
270 · 100% = 900
30%

Ответ: На заводе работает 900.

1000 · 100% = 10000
10%

Ответ: на депозит необходимо положить 10000 рублей.

При изучении процентов вам также будут полезны:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool. Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Процентом называют одну сотую часть.

Рассмотрим алгоритм нахождение 15% от числа 220:

  • 1 Число 220 это 100%, найдем 1% от числа, для этого разделим 220 на 100: 1% от числа равен 220 &div; 100 = 2.2
  • 2 Чтобы найти 15%, умножим значение 1% от числа на 15. 15% от числа равно 2.2 × 15 = 33.
  • 3 В итоге получаем что 15% от числа 220 равно 33%.Полностью нахождения 15% от числа можно записать: 220 &div; 100 × 15 = 2.2 × 15 = 33
Пример Вычислить 10%, 30%, 50% от числа 760.

10% от числа равно: 760 &div; 100 × 10 = 7.6 × 10 = 76

30% от числа равно: 760 &div; 100 × 30 = 7.6 × 30 = 228

50% от числа равно: 760 &div; 100 × 50 = 7.6 × 50 = 380

Рассмотрим пример когда нужно вычислить общее количество предметов, если известна часть.

Найдем чему равен 1% и умножим на 100:

100% от числа равно: 6 &div; 15 × 100 = 0.4 × 100 = 40

Частное двух чисел называют отношением этих чисел.

Рассмотрим на примерах как находить отношение двух чисел.

Число 4 составляет 20% от числа 20. Для вычисления разделим 4 на 20 и умножим на 100, получим 4 &div; 20 × 100 = 20%

Число 20 составляет 500% от числа 4. Для вычисления разделим 20 на 4 и умножим на 100, получим 20 &div; 4 × 100 = 500%

Из числа 4 получим 20 увеличив на 400%. Для вычисления разделим 20 на 4, умножим на 100 и отнимем 100%, получим 20 &div; 4 × 100 – 100 = 400%

Из числа 20 получим 4 уменьшив число на 80%. Для вычисления разделим 4 на 20, умножим на 100 и отнимем 100%, получим 4 &div; 20 × 100 – 100 = -80%. Если в результате получается отрицательное значение, то число надо уменьшать, если положительно то увеличивать.

Найдем отношение двух вещественных чисел.

Число 0.3 составляет 50% от числа 0.6. Для вычисления разделим 0.3 на 0.6 и умножим на 100, получим 0.3 &div; 0.6 × 100 = 50%

Число 0.6 составляет 200% от числа 0.3. Для вычисления разделим 0.6 на 0.3 и умножим на 100, получим 0.6 &div; 0.3 × 100 = 200%

Из числа 0.3 получим 0.6 увеличив на 100%. Для вычисления разделим 0.6 на 0.3, умножим на 100 и отнимем 100, получим 0.6 &div; 0.3 × 100 – 100 = 100%

Из числа 0.6 получим 0.3 уменьшив число на 50%. Для вычисления разделим 0.3 на 0.6, умножим на 100 и отнимем 100, получим 0.3 &div; 0.6 × 100 – 100 = -50%.

Один процент – это сотая часть от числа. Данное понятие используется, когда нужно обозначить отношение доли к целому. Кроме этого, в процентах можно сравнивать несколько величин, при этом обязательно указывая, относительного какого целого проценты вычисляются. Например, расходы выше доходов на 10 % или цена на железнодорожные билеты возросла на 15 % в сравнении с тарифами прошлого года. Число процентов выше 100 означает, что доля превышает целое, как часто бывает при статистических расчетах.

Процент как финансовое понятие – плата, заемщика кредитору за предоставление денег во временное пользование. В бизнесе встречается выражение «работать за проценты». В данном случае подразумевается, что размер вознаграждения зависит от прибыли или оборота (комиссионные). Обойтись без вычисления процентов невозможно в бухгалтерии, бизнесе, банковском деле. Чтобы упростить расчеты, разработан онлайн-калькулятор процентов.

Калькулятор позволяет вычислить:

  • Процент от заданного значения.
  • Процент из суммы (налог по фактической зарплате).
  • Процент от разницы (НДС из ).
  • И многое другое.

При решении задач на калькуляторе процентов нужно оперировать тремя значениями, одно из которых неизвестно (по заданным параметрам вычисляется переменная). Сценарий расчета следует выбирать, исходя из заданных условий.

Механизм работы

До сих пор мы рассматривали работу сложного процента в теории. Рассмотрим, что они из себя представляют на практике, на примере банковских депозитов и инвестиций.

На примере банковского депозита

При выборе банковского депозита вкладчик должен обращать внимание на несколько параметров: надежность банка, его участие в государственной системе страхования, условия пополнения и снятия денег, минимальная сумма на счете. Но главный из них – процентная ставка и условия ее начисления

Механизм сложных процентов подключен к вкладам с капитализацией процентов. А сама ставка, которая будет действовать на вашем счете, называется эффективной. Если вы не планируете снимать начисленный доход в течение всего срока накопления, то логично выбрать вклад именно с капитализацией.

Сравним полученный доход по депозиту с начислением процентов ежегодно, ежеквартально, ежемесячно и ежедневно. Первоначальные условия:

  • сумма – 400 000 ₽;
  • % ставка – 4 % годовых;
  • срок вклада: 1, 2 и 3 года.

Сумма, которую получит вкладчик в конце срока, составит:

Срок депозита Начисление процентов
1 раз в год 1 раз в квартал 1 раз в месяц 1 раз в день
1 год 416 000 416 241,6 416 296,62 416 323,38
2 года 432 640 433 142,68 433 257,18 433 312,9
3 года 449 945,6 450 730,01 450 908,75 450 995,73

В инвестициях

Сложный процент работает не только в банковской, но и в инвестиционной сфере. Если в банках процесс начисления процентов на проценты называют капитализацией, то в инвестициях – реинвестированием, т. е. повторным инвестированием. Но суть остается одинаковой.

Долгосрочные инвесторы хорошо знакомы с механизмом сложных % и стараются его использовать по максимуму. Рассмотрим, как он работает в различных инвестиционных инструментах.

Облигации

Доходность облигации складывается из двух источников – рост котировок и купоны. Последние выплачиваются в виде % от номинала ценной бумаги. Как правило, раз в полгода.

Эффект сложного процента можно наблюдать на купонных выплатах, но только в одном случае – если вы полученную прибыль не тратите на текущее потребление, а повторно вкладываете в инвестиции, т. е. реинвестируете. Понятно, что на доход от одной облигации мало что можно купить. Но если ценных бумаг несколько десятков или сотен, то сумма достаточна для покупки еще нескольких облигаций.

Полная информация об актуальных стратегиях, которые уже принесли миллионы пассивного дохода инвесторам

Скачать книгу

Например, владелец одной ОФЗ-26212-ПД 2 раза в год будет получать по 35,15 ₽. За год заработает 70,3 ₽. На эти деньги нельзя купить новую ОФЗ. Если облигаций не одна, а, например, 50 штук, то за год доход составит 3 515 ₽. Можно купить еще 3 ОФЗ за 1 085,81 ₽/шт. (котировка на 27.10.2020).

Если вы не держите облигацию до погашения, а пытаетесь заработать на росте котировок, то и в этом случае полученную прибыль от перепродажи лучше реинвестировать для включения механизма сложных %.

Акции

Точно такой же эффект, как описанный в предыдущем примере, может давать реинвестирование дохода от акций в покупку новых акций. Для этого полученные дивиденды не надо выводить со счета, а повторно инвестировать.

Не все эмитенты выплачивают дивиденды. Некоторые инвесторы покупают в свои инвестиционные портфели акции роста, т. е. бумаги, которые в перспективе могут вырасти в цене. Купил дешевле, продал дороже – одна из стратегий инвестирования. Сложный % заработает, если на полученную прибыль от перепродажи увеличится капитал в инвестициях, а не количество вещей в гардеробе.

Аналогично механизм “снежного кома” работает и с другими инструментами инвестиций. Эффект можно усилить, если инвестировать на ИИС, тогда каждый возврат подоходного налога (максимум 52 000 ₽ в год) необходимо опять возвращать на брокерский счет и покупать ценные бумаги.

Способ четвёртый: составляем пропорцию

Посчитать процент от суммы можно с помощью составления пропорции. Это ещё одно страшное слово из школьного курса математики. Пропорция – равенство между двумя отношениями четырёх величин. Для наглядности лучше сразу разобраться на конкретном примере. Вы хотите купить сапоги за 8 000 рублей. На ценнике указано, что они продаются со скидкой 25%. Сколько же это в рублях? Из 4 величин мы знаем 3. Есть сумма 8 000, которая приравнивается к 100%, и 25%, которые требуется посчитать. В математике обычно неизвестную величину называют X. Получается пропорция:

Для удобства подсчётов переводим проценты в десятичные дроби. Получаем:

Решается пропорция так: Х = 8 000 * 0,25: 1X = 2 000

2 000 рублей – скидка на сапоги. Вычитаем эту сумму из старой цены. 8 000 – 2 000= 6 000 рублей (новая цена со скидкой). Вот такая приятная пропорция.

Этим методом можно воспользоваться и для определения значения 100%, если знаете числовой показатель – допустим, 70%. На общекорпоративном собрании шеф объявил, что за год было продано 46 900 единиц товара, при этом план выполнен лишь на 70%. Сколько же необходимо было продать, чтобы выполнить план полностью? Составляем пропорцию:

Переводим проценты в десятичные дроби, получается:

Решаем пропорцию: Х = 46 900 * 1: 0,7Х = 67 000. Вот таких результатов работы ожидало начальство.

Как вы уже догадались, методом пропорции можно вычислить, сколько процентов составляет числовой показатель от суммы. Например, выполняя тест, вы ответили правильно на 132 вопроса из 150. Сколько процентов задания было сделано?

Переводить в десятичные дроби эту пропорцию не надо, можно сразу решать.

Х = 100 * 132: 150. В итоге Х = 88%

Как видите, не так уж всё и страшно. Немного терпения и внимания, и вот уже вычисление процентов вами осилено.

Доброго времени суток, уважаемые гости! А вы хорошо учились в школе? Я вот на отлично, но и у меня возникают ситуации, когда нужно освежить в памяти школьные знания.

К сожалению, среди всего объема информации очень сложно выделить ту, которая может понадобиться на самом деле. Давайте сегодня вспомним, как узнать процент от числа.

Математика необходима в обычной жизни, ведь она учит мыслить нестандартно и развивает логику. Знания вычислительных манипуляций упрощает жизнь в материальном отношении.

Вот примеры использования %:

  1. Данное отношение позволяет улучшить восприятие информации, чтобы сравнить определенные параметры. Например, тело человека состоит из 70 % воды, а медузы – 98%.
  2. Применяются такие расчеты и в экономике. Это нужно, к примеру для расчетов прибыли.
  3. Знания необходимы и для анализа конкретных величин. Например, разницу между зарплатами в разные месяцы.

Что такое процент?

В повседневной жизни дроби   встречаются наиболее часто. Они даже получили свои названия: половина, треть и четверть соответственно.

Но есть ещё одна дробь, которая тоже встречается часто. Это дробь (одна сотая). Данная дробь получила название процент.

Дробь    означает, что нечто разделено на сто частей и от этих ста частей взята одна часть. Значит процентом является одна сотая часть.

Процентом является одна сотая часть

Например,  от одного метра составляет 1 см. Один метр разделили на сто частей, и взяли одну часть (вспоминаем, что 1 метр это 100 см). А одна часть из этих ста частей составляет 1 см. Значит один процент от одного метра составляет 1 см.

от одного метра уже составляет 2 сантиметра. В этот раз один метр разделили на сто частей и взяли оттуда не одну, а две части. А две части из ста составляют два сантиметра. Значит два процента от одного метра составляет 2 сантиметра.

Еще пример,   от одного рубля составляет одну копейку. Рубль разделили на сто частей, и взяли оттуда одну часть. А одна часть из этих ста частей составляет одну копейку. Значит один процент от одного рубля составляет одну копейку.

Проценты встречались настолько часто, что люди заменили дробь  на специальный значок, который выглядит следующим образом:

Эта запись читается как «один процент». Она заменяет собой дробь  . Также она заменяет собой десятичную дробь 0,01 потому что если перевести обычную дробь    в десятичную дробь, то мы получим 0,01. Стало быть между этими тремя выражениями можно поставить знак равенства:

1% =  = 0,01

Два процента в дробном виде будут записаны как  , в виде десятичной дроби как 0,02 а с помощью специального значка два процента записывается как 2%.

2% =  = 0,02

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это – не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте – нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Я рекомендую использовать для этих целей наш учебник «YouClever» (который ты сейчас читаешь) и решебник и программу подготовки «100gia».

Условия их приобретения изложены здесь. Кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Основные задачи на нахождение процента

Для решения задач достаточно понимать определение % и правильно определять число, от которого этот процент ищут в задаче. Рассмотрим конкретные решения типовых задач, чтобы вам было легче понять принцип работы с процентами.

Найти указанный процент от заданного числа

Чтобы узнать % от заданного количества, нужно разделить количество на 100 частей и умножать на указанный %.

A1= A2 * P / 100, где

  • A1 — вычисляемое значение;
  • A2 — заданное начальное значение;
  • P — указанный в задаче процент.

Пример: На пляже Las Salinas отдыхают 2000 человек, 40% из них — женщины. Как рассчитать количество отдыхающих женщин на пляже?Решение: 2000 * 40 / 100 = 800 женщин

Внимание! Если задачи кажутся вам слишком легкими — все равно потратьте 1–2 минуты на их письменное решение. Это позволит укрепить навык и освежить полученные знания

Найти число за его процентным отношением к другому числу

Чтобы узнать число, если известно его процентное отношение к другому числу, нужно разделить известное число на процентное отношение и умножить на 100%. Так мы узнаем для начала 1%, а далее — 100% искомого числа.

Пример: Интернет доход Максима в этом месяце составил 600$, что составляет 200% от дохода «на дядю» в офисе. Сколько получает Максим, работая «на дядю»?Решение: 600 / 200 * 100 = 300$

Найти процентное выражение одного числа от другого

Чтобы найти, сколько % числа состоит в другом, нужно их дробь умножить на 100%.

Пример: Лиза купила 20 шоколадных конфет в продуктовом магазине «Ромашка», а Маша — 50. Сколько процентов от числа Машиных конфет купила Лиза в «Ромашке»?Решение: 20 / 50 * 100 = 40%

Узнать на сколько процентов одно число больше другого

Чтобы узнать, на сколько % одно число превышает другое, нужно взять % второго числа от первого и вычесть 100%.

Пример: Сегодня вечером на заправку заезжали 15 белых машин и 75 черных. На сколько процентов черных машин заехало больше, чем белых?Решение: 75 / 15 * 100 – 100 = 400%

Осторожно! Следующая задача напомнит вам предыдущую, но принцип ее решения немного отличается. Внимательно вчитывайтесь в условия и решение

Узнать на сколько процентов одно число меньше другого

Для расчета, на сколько % одного из чисел меньше, нужно из 100% вычесть процент меньшего числа от большего.

Пример: У Васи в гараже помещается четыре машины, а у Ани только одна. На сколько процентов меньше машин помещается у Ани в гараже?Решение: 100 – 1/4*100 = 75%

Осторожно! При решении подобных заданий, легко перепутать, какое число принимается за 100%. чтобы не допустить этой типичной ошибки, выполняйте проверку подстановочным методом

Как увеличить значение на заданный процент

Для увеличения числа на заданный %, нужно выполнить операцию сложения после того, как найдете % от числа.Пример: У меня есть 40 игр в Steam, по итогам конкурса могу увеличить их на число проценты которого равны 20. Сколько у меня станет игр в Steam, если я выиграю?Решение: 40 + 20 * 40 / 100 = 40 + 8 = 48 шт.

Осторожно! Помните о необходимости записывать обозначение решения в штуках, метрах, процентах, килограммах — такая ошибка серьезно воспринимается проверяющими

Как уменьшить значение на указанный процент

Для уменьшения числа на заданный %, нужно найти величину % от заданного числа и выполнить операцию вычитания.

Пример: Медведю из зоопарка на год выделили 200 литров меда, и он уже съел 10%. Сколько литров осталось в запасе у зоопарка?Решение: 200 – 200 * 10 / 100 = 180 литров

Внимание! Если вы будете долго заниматься решением однотипных задач, принцип их решения может автоматически перенестись на другие задачи. Комбинируйте разные задачи для решений при изучении учебных материалов

Расчет процентов в Excel.

Основная формула для расчета процента от числа в Excel такая же, как и во всех сферах жизни:

Часть / Целое = Процент

Если вы сравните ее с основной математической формулой для процента, которую мы указали чуть выше, то  заметите, что в формуле процента в Excel отсутствует часть * 100. При вычислении процента в Excel вам совершенно не обязательно умножать полученную дробь на 100, поскольку программа делает это автоматически, когда процентный формат применяется к ячейке.

И если в Экселе вы будете вводить формулу с процентами, то можно не переводить в уме проценты в десятичные дроби и не делить величину процента на 100. Просто укажите число со знаком %.

То есть, вместо =A1*0,25   или =A1*25/100 просто запишите формулу процентов  =A1*25%.

Хотя с точки зрения математики все 3 варианта возможны и все они дадут верный результат.

А теперь давайте посмотрим, как можно использовать формулу процента в Excel для реальных данных. Предположим, в вашей таблице Эксель записана сумма заказанных товаров в столбце F и оставленных товаров в столбце G. Чтобы высчитать процент доставленных товаров, выполните следующие действия:

  • Введите формулу =G2/F2 в ячейку H2 и скопируйте ее на столько строк вниз, сколько вам нужно.
  • Нажмите кнопку «Процентный стиль» ( меню «Главная» > группа «Число»), чтобы отобразить полученные десятичные дроби в виде процентов.
  • Не забудьте при необходимости увеличить количество десятичных знаков в полученном результате.
  • Готово! 🙂

Такая же последовательность шагов должна быть выполнена при использовании любой другой формулы процентов в Excel.

На скриншоте ниже вы видите округленный процент доставленных товаров без десятичных знаков.

Чтобы определить процент доставки, мы сумму доставленных товаров делим на сумму заказов. И используем в ячейке процентный формат, при необходимости показываем десятичные знаки.

Запишите формулу в самую верхнюю ячейку столбца с расчетами, а затем протащите маркер автозаполнения вниз по столбцу. Таким образом, мы посчитали процент во всём столбце.

История возникновения процентных задач

Латинское выражение pro centum определяется как «за сотню», «со ста». Но произошло оно от итальянского слова, которое пишется как «сто». Однако еще существует предположение, что знак «%» (процент) появился через оплошность писателя книги. Он вместо «сто» напечатал %. Один инженер из Нидерландов как первооткрыватель выпустил в мир процентную таблицу расчетов в 1584 г. Сначала эта наука применялась в торговых областях, затем постепенно проценты стали использовать в технических работах, науке, хозяйственных делах, статистике. Можно сделать вывод, что математика и использование процентных вычислений очень пригодятся в жизни.

Заключение

В нашем материале мы разобрали, каким образом можно найти процент от любого числа, а также привели формулы с различными примерами. Наиболее просто высчитать долю с помощью калькулятора, который имеется в абсолютном большинстве современных гаджетов.

Один процент – это сотая часть от числа. Данное понятие используется, когда нужно обозначить отношение доли к целому. Кроме этого, в процентах можно сравнивать несколько величин, при этом обязательно указывая, относительного какого целого проценты вычисляются. Например, расходы выше доходов на 10 % или цена на железнодорожные билеты возросла на 15 % в сравнении с тарифами прошлого года. Число процентов выше 100 означает, что доля превышает целое, как часто бывает при статистических расчетах.

Процент как финансовое понятие – плата, заемщика кредитору за предоставление денег во временное пользование. В бизнесе встречается выражение «работать за проценты». В данном случае подразумевается, что размер вознаграждения зависит от прибыли или оборота (комиссионные). Обойтись без вычисления процентов невозможно в бухгалтерии, бизнесе, банковском деле. Чтобы упростить расчеты, разработан онлайн-калькулятор процентов.

Калькулятор позволяет вычислить:

  • Процент от заданного значения.
  • Процент из суммы (налог по фактической зарплате).
  • Процент от разницы (НДС из ).
  • И многое другое.

При решении задач на калькуляторе процентов нужно оперировать тремя значениями, одно из которых неизвестно (по заданным параметрам вычисляется переменная). Сценарий расчета следует выбирать, исходя из заданных условий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector