Матрицы в python и массивы numpy

Индексирование массивов

Когда ваши данные представлены с помощью массива NumPy, вы можете получить к ним доступ с помощью индексации.

Давайте рассмотрим несколько примеров доступа к данным с помощью индексации.

Одномерное индексирование

Как правило, индексирование работает так же, как вы ожидаете от своего опыта работы с другими языками программирования, такими как Java, C # и C ++.

Например, вы можете получить доступ к элементам с помощью оператора скобок [], указав индекс смещения нуля для значения, которое нужно получить.

При выполнении примера печатаются первое и последнее значения в массиве.

Задание целых чисел, слишком больших для границы массива, приведет к ошибке.

При выполнении примера выводится следующая ошибка:

Одно из ключевых отличий состоит в том, что вы можете использовать отрицательные индексы для извлечения значений, смещенных от конца массива.

Например, индекс -1 относится к последнему элементу в массиве. Индекс -2 возвращает второй последний элемент вплоть до -5 для первого элемента в текущем примере.

При выполнении примера печатаются последний и первый элементы в массиве.

Двумерное индексирование

Индексация двумерных данных аналогична индексации одномерных данных, за исключением того, что для разделения индекса для каждого измерения используется запятая.

Это отличается от языков на основе C, где для каждого измерения используется отдельный оператор скобок.

Например, мы можем получить доступ к первой строке и первому столбцу следующим образом:

При выполнении примера печатается первый элемент в наборе данных.

Если нас интересуют все элементы в первой строке, мы можем оставить индекс второго измерения пустым, например:

Это печатает первый ряд данных.

Универсальные статистические функции

Помимо тригонометрических функций, Python NumPy также предлагает нам универсальные статистические функции. Некоторые из них перечислены ниже:

  1. функция numpy.amin () : Представляет минимальное значение из массива.
  2. функция numpy.amax () : Представляет максимальное значение из массива.
  3. функция numpy.ptp () : Представляет диапазон значений массива по оси, который вычисляется путем вычитания минимального значения из максимального значения.
  4. функция numpy.average () : вычисляет среднее значение элементов массива.

Пример:

import numpy as np

data = np.array()

print('Minimum and maximum data values from the array: ')
print(np.amin(data))
print(np.amax(data))

print('Range of the data: ')
print(np.ptp(data))

print('Average data value of the array: ')
print(np.average(data))

Выход:

Minimum and maximum data values from the array:
7.9
56.0
Range of the data:
48.1
Average data value of the array:
27.025000000000002

Синтаксис

Давайте начнем с синтаксиса функции . Вот так он выглядит в общем виде:

Эта функция может принимать три аргумента. Первый и второй аргументы являются обязательными, а третий — опциональный.

Исходный массив NumPy, форму которого мы хотим изменить, – это значение первого аргумента ().

Форма массива устанавливается во втором аргументе (). Его значение может быть целым числом или кортежем целых чисел.

Значение третьего аргумента определяет порядок заполнения массива и переноса элементов в преобразованном массиве. Возможных значений три: «C», «F» или «A». Давайте разберем, что значит каждый из этих вариантов.

order=’C’

Упорядочивание индексов в стиле языка C. Индекс последней оси изменяется быстрее, а индекс первой — медленнее.

Упорядочение в стиле C. Источник

order=’F’

Упорядочивания индексов в стиле языка Фортран. Индекс первой оси изменяется быстрее, а индекс последней — медленнее.

Упорядочение в стиле Fortran

order=’A’

Варианты «C» и «F» не учитывают макет памяти основного массива. Они относятся лишь к порядку индексации. Порядок «A» означает чтение и запись элементов в стиле Фортран, если исходный массив в памяти тоже в стиле Фортран. В противном случае применяется C-подобный стиль.

1.4.1.1. What are NumPy and NumPy arrays?¶

NumPy arrays

Python objects:
  • high-level number objects: integers, floating point
  • containers: lists (costless insertion and append), dictionaries
    (fast lookup)
NumPy provides:
  • extension package to Python for multi-dimensional arrays
  • closer to hardware (efficiency)
  • designed for scientific computation (convenience)
  • Also known as array oriented computing
>>> import numpy as np
>>> a = np.array()
>>> a
array()

Tip

For example, An array containing:

  • values of an experiment/simulation at discrete time steps
  • signal recorded by a measurement device, e.g. sound wave
  • pixels of an image, grey-level or colour
  • 3-D data measured at different X-Y-Z positions, e.g. MRI scan

Why it is useful: Memory-efficient container that provides fast numerical
operations.

In : L = range(1000)

In : %timeit i**2 for i in L
1000 loops, best of 3: 403 us per loop

In : a = np.arange(1000)

In : %timeit a**2
100000 loops, best of 3: 12.7 us per loop

NumPy Reference documentation

  • On the web: https://numpy.org/doc/

  • Interactive help:

    In : np.array?
    String Form:<built-in function array>
    Docstring:
    array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0, ...
    
  • Looking for something:

    >>> np.lookfor('create array') 
    Search results for 'create array'
    ---------------------------------
    numpy.array
        Create an array.
    numpy.memmap
        Create a memory-map to an array stored in a *binary* file on disk.
    
    In : np.con*?
    np.concatenate
    np.conj
    np.conjugate
    np.convolve
    

Обработка текста в NumPy на примерах

Когда дело доходит до текста, подход несколько меняется. Цифровое представление текста предполагает создание некого , то есть инвентаря всех уникальных слов, которые бы распознавались моделью, а также векторно  (embedding step). Попробуем представить в цифровой форме цитату из стихотворения арабского поэта Антара ибн Шаддада, переведенную на английский язык:

“Have the bards who preceded me left any theme unsung?” 

Перед переводом данного предложения в нужную цифровую форму модель должна будет проанализировать огромное количество текста. Здесь можно обработать небольшой набор данный, после чего использовать его для создания словаря из 71 290 слов.

Предложение может быть разбито на массив токенов, что будут словами или частями слов в зависимости от установленных общих правил:

Затем в данной таблице словаря вместо каждого слова мы ставим его :

Однако данные все еще не обладают достаточным количеством информации о модели как таковой. Поэтому перед передачей последовательности слов в модель токены/слова должны быть заменены их векторными представлениями. В данном случае используется 50-мерное векторное представление Word2vec.

Здесь ясно видно, что у массива NumPy есть несколько размерностей . На практике все выглядит несколько иначе, однако данное визуальное представление более понятно для разъяснения общих принципов работы.

Для лучшей производительности модели глубокого обучения обычно сохраняют первую размерность для пакета. Это происходит из-за того, что тренировка модели происходит быстрее, если несколько примеров проходят тренировку параллельно. Здесь особенно полезным будет . Например, такая модель, как BERT, будет ожидать ввода в форме: .

Теперь мы получили числовой том, с которым модель может работать и делать полезные вещи. Некоторые строки остались пустыми, однако они могут быть заполнены другими примерами, на которых модель может тренироваться или делать прогнозы.

(На заметку: Поэма, строчку из которой мы использовали в примере, увековечила своего автора в веках. Будучи незаконнорожденным сыном главы племени от рабыни, Антара ибн Шаддан мастерски владел языком поэзии. Вокруг исторической фигуры поэта сложились мифы и легенды, а его стихи стали частью классической арабской литературы).

Массив Python

Python поддерживает все операции, связанные с массивом через объект своего списка. Начнем с одномерного инициализации массива.

Пример массива Python

Элементы массива Python определены в скобках И они разлучены запятыми. Ниже приведен пример объявления одномерного массива Python.

arr = 
print (arr)
print (arr)
print (arr)

Выход из двухмерного массива пример программы будет:


3
5

Индексирование массива начинается от 0. Таким образом, значение индекса 2 переменной ARR составляет 3.

В некоторых других языках программирования, такие как Java, когда мы определяем массив, нам также нужно определить тип элемента, поэтому мы ограничиваем хранение только в том виде данных в массиве. Например, умеет хранить только целые данные.

Но Python дает нам гибкость иметь различные данные данных в том же массиве. Это круто, верно? Давайте посмотрим пример.

student_marks = 
marks = student_marks+student_marks
print(student_marks + ' has got in total = %d + %f = %f ' % (student_marks, student_marks, marks ))

Он дает следующий выход:

Akkas has got in total = 45 + 36.500000 = 81.500000 marks

В приведенном выше примере вы можете увидеть это, Массив имеют три типа данных – строка, int и float.

Python многомерный массив

Двухмерный массив в Python может быть объявлен следующим образом.

arr2d =  , ]
print(arr2d) # prints elements of row 0
print(arr2d) # prints elements of row 1
print(arr2d) # prints element of row = 1, column = 1

Это даст следующий вывод:

                                                                                                                                                                       
                                                                                                                                                                       
4  

Точно так же мы можем определить трехмерный массив или многомерный массив в Python.

Примеры массива Python

Теперь, когда мы знаем, как определить и инициализировать массив в Python. Мы рассмотрим разные операции, которые мы можем выполнить на массиве Python.

Массив Python, проходящая с использованием для петли

Мы можем использовать для петли для прохождения сквозь элементы массива. Ниже приведен простой пример для цикла для прохождения через массив.

arrayElement = 
for i in range(len(arrayElement)):
   print(arrayElement)

Ниже изображения показывает вывод, создаваемый вышеупомянутым примером примера массива.

Пересекающий 2D-массив, используя для петли

Следующий код распечатает элементы ROW-WISE, а затем следующая часть печатает каждый элемент данного массива.

arrayElement2D =  ,  ]
for i in range(len(arrayElement2D)):
   print(arrayElement2D)

for i in range(len(arrayElement2D)):
   for j in range(len(arrayElement2D)):
       print(arrayElement2D)

Это выведет:

Python Array Append

arrayElement = 
arrayElement.append('Four')
arrayElement.append('Five')
for i in range(len(arrayElement)):
   print(arrayElement)

Новый элемент четыре и пять будут добавлены в конце массива.

One
2
Three
Four
Five

Вы также можете добавить массив на другой массив. Следующий код показывает, как вы можете сделать это.

arrayElement = 
newArray = 
arrayElement.append(newArray);
print(arrayElement)
]

Теперь наш одномерный массив наращивания превращается в многомерное массив.

Массив Python размер

Мы можем использовать Функция для определения размера массива. Давайте посмотрим на простой пример для длины массива Python.

arr = 

arr2d = ,]

print(len(arr))
print(len(arr2d))
print(len(arr2d))
print(len(arr2d))

Нарезание массива Python

Python предоставляет особый способ создания массива из другого массива, используя нотацию среза. Давайте посмотрим на несколько примеров ломтиков наращиваний Python.

arr = 

#python array slice

arr1 = arr #start to index 2
print(arr1)

arr1 = arr #index 2 to end of arr
print(arr1)

arr1 = arr #start to index 2
print(arr1)

arr1 = arr #copy of whole arr
print(arr1)

arr1 = arr # from index 1 to index 5 with step 2
print(arr1)

Ниже приведены изображение Python Array Slice Program Example.

Мы можем вставить элемент в массиве, используя функция.

arr = 

arr.insert(3,10)

print(arr)

Python Array POP.

Мы можем вызвать функцию POP на массиве, чтобы удалить элемент из массива по указанному индексу.

arr = 

arr.insert(3,10)
print(arr)

arr.pop(3)
print(arr)

Это все о массиве Python и разных операций, которые мы можем выполнить для массивов в Python.

Синтаксис

Формат:

array = numpy.arange(start, stop, step, dtype=None)

Где:

  • start -> Начальная точка (включенная) диапазона, которая по умолчанию установлена на 0;
  • stop -> Конечная точка (исключенная) диапазона;
  • step -> Размер шага последовательности, который по умолчанию равен 1. Это может быть любое действительное число, кроме нуля;
  • dtype -> Тип выходного массива. Если dtype не указан (или указан, как None), тип данных будет выведен из типа других входных аргументов.

Давайте рассмотрим простой пример, чтобы понять это:

import numpy as np
 
a = np.arange(0.02, 2, 0.1, None)
 
print('Linear Sequence from 0.02 to 2:', a)
print('Length:', len(a))

Это сгенерирует линейную последовательность от 0,2 (включительно) до 2 (исключено) с размером шага 0,1, поэтому в последовательности будет (2 — 0,2) / 0,1 — 1 = 20 элементов, что является длиной результирующего массив numpy.

Вывод:

Linear Sequence from 0.02 to 2: 
Length: 20

Вот еще одна строка кода, которая генерирует числа от 0 до 9 с помощью arange(), используя размер шага по умолчанию 1:

>>> np.arange(0, 10)
array()

Если размер шага равен 0, это недопустимая последовательность, поскольку шаг 0 означает, что вы делите диапазон на 0, что вызовет исключение ZeroDivisionError Exception.

import numpy as np

# Invalid Step Size!
a = np.arange(0, 10, 0)

Вывод:

ZeroDivisionError: division by zero

ПРИМЕЧАНИЕ. Эта функция немного отличается от numpy.linspace(), которая по умолчанию включает как начальную, так и конечную точки для вычисления последовательности. Он также не принимает в качестве аргумента размер шага, а принимает только количество элементов в последовательности.

Необычное индексирование

Необычное индексирование (fancy indexing) — это термин, принятый в
NumPy для описания индексации с использованием целочисленных
массивов.

Предположим, у нас есть массив размера \( 8 \times 4 \)

In : arr = np.empty((8, 4))

In : for i in range(8):
     ...:     arr = i

In : arr
Out: 
array(,
       ,
       ,
       ,
       ,
       ,
       ,
       ])

Чтобы выбрать подмножество строк в определенном порядке, можно
просто передать список или массив целых чисел, указывающих желаемый
порядок:

In : arr]
Out: 
array(,
       ,
       ,
       ])

Использование отрицательных индексов выделяет строки с конца:

In : arr]
Out: 
array(,
       ,
       ])

Передача нескольких индексных массивов делает кое-что другое:
выбирается одномерный массив элементов, соответствующий каждому
кортежу индексов:

In : arr = np.arange(32).reshape((8, 4))

In : arr
Out: 
array(,
       ,
       ,
       ,
       ,
       ,
       ,
       ])

In : arr, ]
Out: array()

Здесь выбраны элементы с индексами , , и
. Независимо от того какая размерность у массива (в нашем
случае двумерный массив), результат такого индексирования — всегда
одномерный массив.

Поведение индексирования в этом случае немного отличается
от того, что могли ожидать некоторые пользователи, а именно:
пользователь мог ожидать прямоугольную область, сформированную путем
выбора поднабора строк и столбцов матрицы. Ниже представлен один из
способов получения таких массивов с помощью необычного индексирования:

In : arr]]
Out: 
array(,
       ,
       ,
       ])

Имейте в виду, что необычное индексирование, в отличие от среза,
всегда копирует данные в новый массив.

Делать математику с NumPy

Любое руководство по NumPy не будет полным без числовых и математических операций, которые вы можете выполнять с NumPy! Давайте рассмотрим их:

добавит 1 к каждому элементу в массиве идобавит массив 2 к массиву 1. То же самое относится и к- все эти команды будут работать точно так же, как описано выше.

Вы также можете заставить NumPy возвращать различные значения из массива, например:

  • вернет квадратный корень каждого элемента в массиве
  • вернет синус каждого элемента в массиве
  • вернет натуральный логарифм каждого элемента в массиве
  • вернет абсолютное значение каждого элемента в массиве
  • вернетсяесли массивы имеют одинаковые элементы и форму

Можно округлить разные значения в массиве:округляется до ближайшего целого числа,будет округляться до ближайшего целого числа ибудет округлять до ближайшего целого числа.

Трансляция с помощью numpy.where()

Если мы предоставим все массивы condition, x и y, numpy будет транслировать их вместе.

import numpy as np

a = np.arange(12).reshape(3, 4)

b = np.arange(4).reshape(1, 4)

print(a)
print(b)

# Broadcasts (a < 5, a, and b * 10)
# of shape (3, 4), (3, 4) and (1, 4)
c = np.where(a < 5, a, b * 10)

print(c)

Вывод

 
 ]
`0 1 2 3`

 
 ]

Опять же, здесь вывод выбирается на основе условия, поэтому все элементы, но здесь b, транслируются в форму a. (Одно из его измерений имеет только один элемент, поэтому при трансляции ошибок не будет).

Итак, b теперь станет ], и теперь мы можем выбирать элементы даже из этого транслируемого массива. Таким образом, форма вывода такая же, как у файла.

1.4.1.6. Copies and views¶

A slicing operation creates a view on the original array, which is
just a way of accessing array data. Thus the original array is not
copied in memory. You can use to check if two arrays
share the same memory block. Note however, that this uses heuristics and may
give you false positives.

When modifying the view, the original array is modified as well:

>>> a = np.arange(10)
>>> a
array()
>>> b = a)
>>> np.may_share_memory(a, b)
True
>>> b = 12
>>> b
array()
>>> a   # (!)
array()

>>> a = np.arange(10)
>>> c = a)

>>> np.may_share_memory(a, c)
False

This behavior can be surprising at first sight… but it allows to save both
memory and time.

Основы индексирования и срезы

Существует много способов выбора подмножества данных или элементов
массива. Одномерные массивы — это просто, на первый взгляд они
аналогичны спискам Python:

In : arr = np.arange(10)

In : arr
Out: array()

In : arr
Out: 5

In : arr
Out: array()

In : arr = 12

In : arr
Out: array()

Как видно, если присвоить скалярное значение срезу, как например,
, значение присваивается всем элементам среза. Первым
важным отличием от списков Python заключается в том, что срезы массива
являются представлениями исходного массива. Это означает, что данные
не копируются и любые изменения в представлении будут отражены в
исходном массиве.

Рассмотрим пример. Сначала создадим срез массива :

In : arr_slice = arr

In : arr_slice
Out: array()

Теперь, если мы изменим значения в массиве , то они
отразятся в исходном массиве :

In : arr_slice = 12345

In : arr
Out: 
array()

«Голый» срез присвоит все значения в массиве:

In : arr_slice = 64

In : arr
Out: array()

Поскольку NumPy был разработан для работы с очень большими массивами,
вы можете представить себе проблемы с производительностью и памятью,
если NumPy будет настаивать на постоянном копировании данных.

Замечание

Если вы захотите скопировать срез в массив вместо отображения, нужно
явно скопировать массив, например, .

С массивами более высокой размерности существует больше вариантов. В
двумерных массивах каждый элемент это уже не скаляр, а одномерный
массив.

In : arr2d = np.array(, , ])

In : arr2d
Out: array()

Таким образом, к отдельному элементу можно получить доступ
рекурсивно, либо передать разделенный запятыми список
индексов. Например, следующие два примера эквивалентны:

In : arr2d
Out: array()

In : arr2d[]
Out: 3

Если в многомерном массиве опустить последние индексы, то возвращаемый
объект будет массивом меньшей размерности. Например, создадим массив
размерности \( 2 \times 2 \times 3 \):

In : arr3d = np.array(, ], , ]])

In : arr3d
Out: 
array(,
        ],

       ,
        ]])

При этом — массив размерности \( 2 \times 3 \):

In : arr3d[]
Out: 
array(,
       ])

Можно присваивать как скаляр, так и массивы:

In : old_values = arr3d[].copy()

In : arr3d[] = 42

In : arr3d
Out: 
array(,
        ],

       ,
        ]])

In : arr3d[] = old_values

In : arr3d
Out: 
array(,
        ],

       ,
        ]])

Аналогично, возвращает все значения, чьи индексы
начинаются с , формируя одномерный массив:

In : arr3d
Out: array()

Это выражение такое же, как если бы мы проиндексировали в два этапа:

In : x = arr3d

In : x
Out: 
array(,
       ])

In : x[]
Out: array()

Индексирование с помощью срезов

Как одномерные объекты, такие как списки, можно получать срезы
массивов посредством знакомого синтаксиса:

In : arr
Out: array()

In : arr
Out: array()

Рассмотрим введенный выше двумерный массив . Получение срезов
этого массива немного отличается от одномерного:

In : arr2d
Out: 
array(,
       ,
       ])

In : arr2d
Out: 
array(,
       ])

Как видно, мы получили срез вдоль оси 0, первой оси. Срез, таким
образом, выбирает диапазон элементов вдоль оси. Выражение
можно прочитать как «выбираем первые две строки массива ».

Можно передавать несколько срезов:

In : arr2d
Out: 
array(,
       ])

При получении срезов мы получаем только отображения массивов того же
числа размерностей. Используя целые индексы и срезы, можно получить
срезы меньшей размерности:

In : arr2d
Out: array()

In : arr2d
Out: array()

Смотрите рис. .


Рисунок 1: Срезы двумерного массива

Пример 4: Укладка 3-D Numpy массива с помощью функции vstack

import numpy as np.array(, ], , ]])
print ("First Input array : \n", x)  .array(, ], , ]])
print ("Second Input array : \n", y) .vstack((x, y))
print ("Vertically stacked array:\n ", res)

Выход:

Объяснение

Мы можем использовать эту функцию для укладки или объединения 3-D массива по вертикали (по строкам). Вместо 1-D массива или 2-D массива в приведенном выше примере мы объявили и инициализировали два 3-D массива. После инициализации мы сохранили их в двух переменных, ‘x и y’ соответственно. Следуя части хранения, мы использовали эту функцию для укладки 3-D массива в вертикальном порядке (по строкам).

Примечание: Форма входных массивов должна быть одинаковой.

Python numpy flip array

  • In this method, we will discuss the Python numpy flip array. For this, we can easily use the function numpy. flip().
  • This method reverses the order of given array elements along the axis, preserving the shape of the array.
  • The shape of the array is fixed, but the number of elements is reordered.

Syntax:

Here is the Syntax of the flip() function

Example:

Let’s take an example to check how to implement a reverse NumPy array by using the flip() function.


Python numpy flip array

You may like the following Python NumPy tutorials:

  • Python NumPy empty array with examples
  • Python NumPy nan
  • Valueerror: Setting an array element with a sequence
  • Python NumPy Average
  • Python NumPy absolute value with examples
  • What is python Django
  • Python dictionary length

In this Python tutorial, we will discuss Python reverse NumPy array with a few examples like below:

  • Python reverse array sort reverse
  • Python numpy inverse array
  • Python numpy invert array
  • Python numpy flip array

Numpy Процентиль против Квантиля

Percentile – Метод процентилей в модуле numpy, с помощью которого можно вычислить n-й процентиль заданных данных (элементов массива) вдоль заданной оси.

Numpy Quantile – Метод квантилей в модуле numpy, с помощью которого можно вычислить q-й квантиль заданных данных(элементов массива) вдоль заданной оси.

Давайте разберемся с помощью примера:

#numpy percentile vs numpy quantile

import numpy as np

arr = 

print("Array : ",arr)
print("\n")

print("25 percentile : ",np.percentile(arr, 25))
print("50 percentile : ",np.percentile(arr, 50))
print("75 percentile : ",np.percentile(arr, 75))
print("\n")

print(".25 Quantile : ",np.Quantile(arr, .25))
print(".50 Quantile : ",np.Quantile(arr, .50))
print(".75 Quantile : ",np.Quantile(arr, .75))

Выход:

Array :  


25 percentile :  20.0
50 percentile :  30.0
75 percentile :  40.0


.25 Quantile :  20.0
.50 Quantile :  30.0
.75 Quantile :  40.0

Объяснение:

Здесь, во-первых, мы импортировали модуль numpy как np. Во-вторых, мы взяли входной массив в переменной arr. В-третьих, мы применили функцию процентиля, в которой мы вычислили 25-й, 50-й и 75-й процентили и напечатали результат. В-четвертых, мы применили квантильную функцию, в которой мы вычислили 25-й, 50-й и 75-й процентили и напечатали результат. Следовательно, мы можем увидеть результат и узнать, что есть только разница, которая говорит 1 процентиль = .01 квантиль.

1.4.1.3. Basic data types¶

You may have noticed that, in some instances, array elements are displayed with
a trailing dot (e.g. vs ). This is due to a difference in the
data-type used:

>>> a = np.array()
>>> a.dtype
dtype('int64')

>>> b = np.array()
>>> b.dtype
dtype('float64')

Tip

Different data-types allow us to store data more compactly in memory,
but most of the time we simply work with floating point numbers.
Note that, in the example above, NumPy auto-detects the data-type
from the input.

You can explicitly specify which data-type you want:

>>> c = np.array(, dtype=float)
>>> c.dtype
dtype('float64')

The default data type is floating point:

>>> a = np.ones((3, 3))
>>> a.dtype
dtype('float64')

There are also other types:

Нужда в numpy.ones

Большинство из вас пришли к этой статье, чтобы узнать, как использовать numpy.ones в python. Итак, я думаю, что вы все довольно много знаете о математике, поскольку numpy-это в основном математические операции с большими данными. Нам часто приходится заполнять нашу матрицу всеми единицами во время матричных операций в математике. Чтобы достичь этого в программировании на python без десятков строк кода, у нас есть специальная функция , присутствующая в библиотеке numpy. Эта функция поможет нам достичь нашей цели, создав идентификационную матрицу всего в двух строках. Эта функция называется numpy.ones().

Теперь я думаю, что вы, возможно, знаете важность функции numpy.ones (). Давайте посмотрим, как мы можем использовать и внедрять его в наши проекты

Пример

Давайте теперь объединим все это в простой пример, чтобы продемонстрировать линейность последовательностей, генерируемых numpy.arange().

Следующий код отображает 2 линейные последовательности между и с помощью numpy.arange(), чтобы показать, что последовательность генерирует единообразие, поэтому результирующие массивы являются линейными.

import numpy as np
import matplotlib.pyplot as plt

y = np.zeros(5)

# Construct two linear sequences
# First one has a step size of 4 units
x1 = np.arange(0, 20, 4)

# Second one has a step size of 2 units
x2 = np.arange(0, 10, 2)

# Plot (x1, )
plt.plot(x1, y, 'o')

# Plot (x2, )
plt.plot(x2, y + 0.5, 'o')

# Set limit for y on the plot
plt.ylim()

plt.show()

Вывод

Как вы можете видеть, оранжевые точки представляют линейную последовательность от 0 до 10 с размером шага 2 единицы, но поскольку 10 не включено, последовательность равна . Точно так же синие точки представляют последовательность .

Python numpy invert array

  • In this section, we will discuss Python numpy invert array. Here we can easily use the function numpy.invert().
  • This method is used to compute the bitwise inversion of a given array element-wise.
  • It Originates the bitwise NOT of the binary number representation of the integers in the input arrays.

Syntax:

Here is the Syntax of numpy.invert()

  • It consists of few parameters
    • X: input array (Only integer value and boolean expression are handled).
    • Out: It is an optional parameter. A position into which the result is stored. If provided, it should have a shape function that the inputs broadcast.
    • Where: This condition is provided over the input. At a position where the condition is boolean, the out numpy array will be set to the ufunc result.

Example:

Let’s take an example to check how to implement a numpy invert array

Here is the Screenshot of the following given code


Python numpy invert array

Вывод

В этой статье мы подробно изучили различные аспекты, такие как синтаксис, функционирование и случаи этого vstack. Numpy.vstack () – это функция, которая помогает сложить входную последовательность вертикально так, чтобы получился один сложенный массив. Это может быть полезно, когда мы хотим сложить различные массивы в одну строку (вертикально). Мы можем использовать эту функцию вплоть до nd-массивов, но рекомендуется использовать ее до 3-D массивов.

Однако, если у вас есть какие-либо сомнения или вопросы, дайте мне знать в разделе комментариев ниже. Я постараюсь помочь вам как можно скорее.

Счастливого Пифонирования!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector